Clean Sky 2 General Information Day
21 November 2013, Brussels

Large Passenger Aircraft (LPA) IADP
Michel GOULAIN (AIRBUS)
From *Clean Sky* towards *Clean Sky* 2

CS1 Smart Fixed Wing Aircraft -ITD (SFWA)
- is a unique environment for high TRL integrated Research and Development and large scale ground and flight demonstrators
- provides the frame for well aligned objective driven R&T covering development and maturation through numerical simulation, rig demonstrators, wind tunnel testing, small and large scale test under condition relevant for operation

CS2 Large Passenger Aircraft IADP (LPA)
- Will provide a platform for even more focussed large scale, highly integrated demonstrators with core partners and partners
- Build on down best candidate technologies emerging from *Clean Sky* (1) other national and EU R&T programs and additional technologies developed in *Clean Sky* 2 ITDs

SFWA key technologies
- NLF – wing for large transport aircraft and bizjets
- HLFC- technologies
- CROR engine integration
- Innovative empennage for next generation bizjets
- Innovative control surfaces
- Buffet Control Technologies
- Advanced load control architectures and function
- Advanced Flight Test instrumentation

Contribute to TRL - Scale
1 2 3 4 5 6
“Mature and validate disruptive technologies for next generation Large Passenger Aircraft through large scale integrated demonstration”

- **Platform 1**: Advanced Engine and Aircraft Configuration
- **Platform 2**: Innovative Physical Integration Cabin-System-Structure
- **Platform 3**: Next Gen. Electrical A/C Systems, Cockpit Systems & Avionics

Not legally binding
LPA-IADP: Work Breakdown Structure (WBS)
Setup and Implementation

Large Passenger Aircraft Platform – Integration Topics

Airbus with SAAB, Dassault Aviation, SNECMA and Partners

Platform 1 Advanced Engine and Aircraft Configurations

WP 1.1 CROR demo engine FTD

WP 1.2 Advanced engine integration driven rear fuselage

WP 1.3 Validation of dynamically scaled flight testing

WP 1.4 Hybrid laminar flow control large scale demonstration
 - HLFC large-scale specimen demonstrator in flight operation
 - High speed demonstrator with hybrid laminar flow control wing

WP 1.5 Innovative Flight operations

WP 1.6 Demonstration of radical aircraft configurations

Estimated Volume of Activities ~560M€

Not legally binding
Setup and Implementation: LPA Platform 2

Large Passenger Aircraft Platform – Integration Topics

```
Platform 1 - OAD
Platform 2 - OPD
Platform 3 - OSD
```

Airbus with, Liebherr, Fraunhofer and Partners

Advanced Engine and Aircraft Configurations

Innovative Physical Integration Cabin-System-Structure

TRL 4-6 Aircraft Level

Platform 2 Innovative Physical Integration Cabin-System-Structure

WP 2.1 Integrated product architecture

WP 2.2 Non specific design technologies

WP 2.3 Technology validation

WP 2.3.1 Multi purpose demonstrators

- Next generation fuselage, cabin & cargo functional demonstrator
- Next Generation Cabin & Cargo functional demonstrator
- Next generation lower centre fuselage structural demonstrator

WP 2.3.2 Testing generation cockpit features flight demonstration

WP 2.3.3 Pre-Production Line Technologies

Estimated Volume of Activities ~290M€
Setup and Implementation: LPA Platform 3

Estimated Volume of Activities ~230M€
High-level Objectives

LPA prospected contribution to H2020 environmental targets

<table>
<thead>
<tr>
<th>Objective</th>
<th>Target Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced engine integration (incl. expected engine benefits)</td>
<td>15 - 20%</td>
</tr>
<tr>
<td>Laminar Flow technology</td>
<td>6 - 9%</td>
</tr>
<tr>
<td>Innovative flight operations</td>
<td>5 - 10%</td>
</tr>
<tr>
<td>Next generation integrated fuselage - Cabin & Cargo</td>
<td>5 - 10%</td>
</tr>
<tr>
<td>Next generation Cockpit, Navigation & Avionics</td>
<td>8 - 10%</td>
</tr>
</tbody>
</table>

Note:
- Targets vs. 2014 state of the art.
- Targets cannot be expected to be fully cumulative when integrated at aircraft level
LPA prospected contribution to **H2020 smart & efficient mobility targets**

- Higher operational flexibility with respect to flight and ground operational procedures, contributes to higher operational efficiency in congested airspace
- Higher resilience against difficult weather
- Shorter turn around times on ground
- Flexible cabin concepts provides better offers to passenger needs (physical ability, on board services, amount, size and type of baggage,…)
- Compliance to seamless cross-modal transportation concepts

Not legally binding
High-level Objectives

LPA prospected contribution to H2020 industrial leadership targets

- Strengthening of industrial leadership in the large transport aircraft sector through the entire supply chain, at European scale and scope
- Strategic alignment of R&T efforts across contributing disciplines, different sizes of contributing industries (SME, Medium large), Research Establishments and Academia towards common objectives
- Triggering of technology spill over into other industrial areas through contributing Core Partners and Partners
- High potential for progressive R&T of technologies emerging from national and European funded R&T programs (e.g. L1 and L2)
- Improving the “Econological” footprint of industrial manufacturing processes
High-level Objectives

LPA-IADP high level provisional schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CROR demo engine FTD</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>n/a</td>
<td>n/a</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Advanced engine integration driven fuselage</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>n/a</td>
<td>n/a</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Validation of dynamically scaled flight testing</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>n/a</td>
<td>n/a</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>HLFC large scale demonstration</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Innovative flight operations</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Demonstration of radical aircraft configurations</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Platform 2

- Next gen. fuselage, cabin and systems integrated demonstrator
- Next gen. cabin & cargo functional demonstrator
- Next Gen. Lower centre fuselage structural demonstrator

Platform 3

- Integrated system and avionics demonstration
- Next gen. Cockpit ground demonstrator
- Cockpit feature flight demonstrator
- Pilot case demonstrator

Contribute to TRL - Scale

<table>
<thead>
<tr>
<th>TRL</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Update and detailing to be made based on "bottom-up planning, with Core Partners"
Further Information

Airbus PoC: Jens König and Michel Goulain

Please use:

CleanSky2-LPA@airbus.com

Not legally binding
Thank you for your attention!